Zurück geht es hier Grüezi! Sie wurden auf finanzen.ch, unser Portal für Schweizer Anleger, weitergeleitet.  Zurück geht es hier.

Web3 Aktie 130492393 / US8609141002

05.09.2025 19:26:43

AI Agents Are Hungry; Web3 Data Is a Mess : Why an AI-Ready Data Layer Is the Need of the Hour

AI agents are simple to describe and complex to serve: observe → decide → act → learn. Each loop depends on fresh, reliable, permissionless data. In Web2, you can rent this from a few platforms. In Web3, data lives across dozens of heterogeneous chains, node stacks, indexers, and off-chain oracles – each with its own quirks of latency, finality, semantics, and failure modes. The result: agents are hungry; the pantry is chaotic.Let’s understand the problem, public signals, and outline what an AI-ready data layer must look like to unlock the agentic economy for DeFi and beyond.AI is rapidly penetrating Web3, but the bottleneck remains data.Prominent builders are increasingly agreeing that AI and crypto are complementary: AI brings generative capability and autonomy, while crypto brings ownership, provenance, and open markets for compute and data. Chris Dixon has argued that AI systems need blockchain-enabled computing to reopen the internet and align incentives for data and model access.Vitalik Buterin categorizes crypto×AI touchpoints: AI as interface, player, target of economic guarantees and stresses careful incentive design, i.e., you can’t bolt AI onto adversarial markets without thinking through data quality and safety.On the execution side, DeFi itself is moving towards intent-based designs (i.e., you state an outcome; solvers compete to fulfil it), precisely because raw, on-chain data flows are hostile to good UX under latency and MEV. Uniswap Labs and Across proposed ERC-7683 , a cross-chain intents standard, as a shared rail for this pattern.Takeaway: agents are arriving; markets are adapting; data remains the constraint.The Ugly Truth: What AI developers in Web3 run intoHeterogeneity. Every chain has its own RPC behaviour, logs, event schemas, reorg patterns, and finality assumptions. Basic queries (e.g., “positions across Base+Solana+Polygon”) turn into N bespoke indexers.Staleness vs. cost. You can get cheap, slow data, or fast, expensive data (custom stream indexers, managed mirrors). Choosing both is nontrivial.Semantics. Blocks are facts; insights are models. Converting logs into entities (pools, positions, P&L) involves constant ETL and re-computation, per protocol and per chain.Reliability under load. Network congestion and oracle lag create precisely the tail risks that autonomous agents are least able to mask.Indexing providers and docs agree on the fundamentals: direct chain queries are complex and slow; you need subgraphs or equivalent mirrors for performance, then you still must solve cross-chain streaming and schema normalization.“Actionable data” defined and why Web3 is short of itCall data is actionable when an agent can decide and execute within a bounded jitter budget while preserving correctness. Concretely:Normalized semantics: tokens, pools, positions, transfers, prices with consistent types/units across chains.Freshness & determinism: p95/p99 latency SLOs, plus finality-aware freshness (soft vs. brutal finality).Verifiability: cryptographic provenance or replayable derivation (subgraph versions, mirror checksums).Compute-near-data: scoring, anomaly detection, route simulation, co-located with the streams.Streaming + time-travel: append-only event streams plus indexed snapshots for “what changed?” queries.Today’s Web3 stack gives you fragments of this (subgraphs, RPCs, analytics APIs), but not the cohesive, cross-chain, low-latency fabric that production agents demand. Even The Graph’s own materials and third-party guides frame direct chain access as complex, pushing developers to indexing/mirroring systems for practicality.Lessons from real incidents: when latency and fragmentation biteHere are a few recent AI×Web3 products that have closed, been shelved, or effectively ceased operating :Planet Mojo’s “WWA” platform for AI gaming agents: shut down on July 1, 2025 alongside the studio’s flagship game Mojo Melee, citing shifting market realities.Brian (AI → onchain transaction builder) : a Web3 “text-to-transaction” assistant that started at ETHPrague 2023; the team announced termination of operations on May 26, 2025 after losing first-mover advantage as agentic executors proliferated.TradeAI / Stakx (AI-trading schemes using NFTs & “algos”) : took in hundreds of millions, then froze withdrawals and stopped operating; now the subject of a U.S. class-action lawsuit alleging unregistered securities and misrepresentations. (A clear cautionary tale of “AI” claims in crypto.)BitAI (“hands-free” AI crypto autotrader) : went offline in March 2024 after promising AI automated profits;Regulatory halts intersecting AI & Web3: While not a permanent failure, Worldcoin (World Network) saw operations temporarily suspended in Indonesia in May 2025, illustrating how compliance risk can abruptly derail AI-adjacent Web3 rollouts.Patterns we observedLatency + data fragmentation kills agents in production. Teams that promised “natural-language to onchain” often struggled with multichain freshness/finality and brittle indexing, leading to misses or costly infra band-aids.Hype-to-ROI gap: Analyst firms expect a high cancellation rate for “agentic AI” projects over the next couple of years-costs, unclear value, and risk controls are the common failure modes.“AI trading” claims = red flag category. Regulators and watchdogs repeatedly flag “proprietary AI bot” pitches as high-risk; many go dark or morph after a marketing blitz.“Data fragmentation is the biggest barrier for AI agents in Web3: too many chains, schemas, and brittle APIs force agents to choose between stale signals or endless stitching. Latency, freshness gaps, and complex on-chain execution turn good strategies into missed trades, while inconsistent formats cause grounding errors, model drift, and brittle behavior.The solution is a unified, real-time semantic data layer with normalized schemas, streaming indexers, canonical events, and deterministic fallbacks, so agents focus on strategy, not plumbing. At Elsa, we’re building this agentic layer with cross-chain liquidity, data endpoints, and real-time RAG (WIP), turning fragmented chaos into reliable autonomous execution.”–Dhawal Shah, Founder and CEO at HeyElsaPatterns that work: solutions around today’s incapabilitiesIntent rails, not raw calls. Shift from “do X at address Y” to “achieve outcome Z,” then let solvers compete, hedging MEV/latency at the meta-layerFinality-aware freshness. Expose “freshness + confidence” to agents (e.g., soft finality at N confirmations vs. brutal finality after epoch), so policies can adapt.Compute-to-data. Move scoring/simulation to the stream edge to avoid fan-out latency.Proofs & fallbacks. Two independent sources for critical signals (e.g., price) plus explainable derivations to help agents learn from misses.Human-in-the-loop gates. For high-impact actions, require explicit sign-off or bounded policy budgets.NewsBTC analyzed major intent rails and indexing providers, and gathered insights on today’s challenges from a recently launched AI×Web3 product.“AI agents don’t fail on logic, they fail on inputs. Blockchains emit raw, inconsistent log fragments without context. Until we have a neutral layer that normalises and verifies this data in real time, agents in Web3 are operating blind. The challenge isn’t building more intelligent AI. It’s giving them clean, reliable signals to act on.”–Nasim Akthar, CTO at Igris.botWhat an AI-ready data layer should look like – spec, not hypeThink of it as Programmable, Verifiable, Real-Time, Cross-Chain:Ingestion & normalization: Multi-chain connectors → canonical schemas (tokens, pools, positions, prices, routes) with explicit units and decimals.Streaming + snapshots: Kafka-like streams for events; OLAP snapshots for time-travel and joins.Mirrors with provenance: Deterministic mirrors of subgraphs or equivalent, with versioned transforms and integrity checks so agents can reason about data lineage.On-stream compute: Built-ins for volatility, liquidity depth, route simulation, slippage/risk scores co-located with streams to meet p95 targets.Finality-aware freshness API: Every read returns : freshness_ms, confirmations, finality_level so policies can gate actions.Intent hooks: First-class bindings to intent rails (CoW, 7683, Across) so “decide → act” is one call, with simulation receipts,Safety & audit: Rate limits, kill-switches, replay logs, and post-trade proofs for continuous learning.Future of AI × Web3: markets of agents, paying for provable dataWith the right data layer, the frontier expands:Agent MM & risk: autonomous market-making that prices data freshness & finality into quotes.Governance copilots: agents that read proposals, simulate outcomes, and stake opinions with cryptographic attestations.Cross-chain portfolio policies: “End with 2 ETH on Base if weekly variance > X,” routed by intent rails under bounded latency.Data markets for models: provenance-aware datasets and inference services with on-chain payment & usage proofsSafety layers: Vitalik’s caution stands – interfaces and policies must be designed to mitigate scams and misalignment. Build rails that bias toward correctness, not just speed.Closing: architecture is destinyIf agents are the next user layer, your architecture becomes your product. Teams that continually patch RPC calls and cron ETLs will struggle to keep up with multi-chain, real-time, adversarial markets. Teams that stand up an AI-ready data layer – normalised, mirrored, computable, finality-aware, and wired to intent rails, will ship agents that observe, decide, act, and learn at production speed.Give agents the data fabric they deserve. They’re hungry, and the market won’t wait.Weiter zum vollständigen Artikel bei NewsBTC

Nachrichten zu Web3 Corp Registered Shs

  • Relevant
  • Alle
  • vom Unternehmen
  • ?
Keine Nachrichten verfügbar.

Analysen zu Web3 Corp Registered Shs

  • Alle
  • Kaufen
  • Hold
  • Verkaufen
  • ?
Zu diesem Datensatz liegen uns leider keine Daten vor.
Eintrag hinzufügen

Erfolgreich hinzugefügt!. Zu Portfolio/Watchlist wechseln.

Es ist ein Fehler aufgetreten!

Kein Portfolio vorhanden. Bitte zusätzlich den Namen des neuen Portfolios angeben. Keine Watchlisten vorhanden. Bitte zusätzlich den Namen der neuen Watchlist angeben.

CHF
Hinzufügen

KI Aktien – Gewinner der Digitalisierung – Wall Street Live mit Tim Schäfer

In dieser Folge sprechen wir mit Tim Schäfer live aus New York über den aktuellen Stand der KI-Aktien. Sind die Kurse von Nvidia, Microsoft, Meta, Amazon, Alphabet und Apple noch gerechtfertigt – oder stehen wir kurz vor einer Spekulationsblase?

📈 Tim analysiert die Zahlen, Investitionen und Bewertungen der grossen Tech-Konzerne und zeigt, wie viel Kapital derzeit in KI-Infrastruktur fliesst. Zudem diskutieren wir, welche Randbereiche vom KI-Boom profitieren könnten – etwa Rechenzentren, Stromversorger oder Hardwarehersteller.

Themen im Video:
🔹Die „Magnificent 7“ im Check: Meta, Microsoft, Nvidia, Amazon, Alphabet, Apple
🔹Investitionen in KI: 71 Mrd. bei Meta, 120 Mrd. bei Microsoft
🔹Nvidia: Marktführer, aber extrem teuer
🔹Apple: Aufholjagd oder zu spät dran?
🔹Gefahr einer KI-Blase?
🔹Welche Alternativen bieten sich für Langfristinvestoren?
🔹Rechenzentren, Energieanbieter & Zulieferer im Fokus
🔹Wie Tim mit Rücksetzern und Seitwärtsphasen umgeht
🔹Erste Anzeichen für eine neue Superintelligenz?

👉🏽 https://bxplus.ch/wall-street-live-mit-tim-schaefer/

KI Aktien – Gewinner der Digitalisierung – Wall Street Live mit Tim Schäfer

Mini-Futures auf SMI

Typ Stop-Loss Hebel Symbol
Short 12’775.85 19.50 UUOSMU
Short 13’030.74 13.96 BFTSNU
Short 13’547.16 8.77 UK0BSU
SMI-Kurs: 12’312.65 08.09.2025 17:31:54
Long 11’749.31 19.04 SQBBAU
Long 11’493.58 13.65 BO0SVU
Long 11’023.53 9.00 BYCSSU
Die Produktdokumentation, d.h. der Prospekt und das Basisinformationsblatt (BIB), sowie Informationen zu Chancen und Risiken, finden Sie unter: https://keyinvest-ch.ubs.com

Börse aktuell - Live Ticker

Börsen in Asien uneins

Die Börsen in Fernost finden am Dienstag keine gemeinsame Richtung. Am heimischen Aktienmarkt ging es zum Wochenstart verhalten zu. Am deutschen Aktienmarkt prägten unterdessen Gewinne das Bild. An der Wall Street ging es nach oben.

finanzen.net News

Datum Titel
{{ARTIKEL.NEWS.HEAD.DATUM | date : "HH:mm" }}
{{ARTIKEL.NEWS.BODY.TITEL}}